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Statement A

Signal Innovations Group (SIG) has been working closely with the Naval Research Laboratory (NRL) on development of advanced 
algorithms for detection and classifying MCM targets, with data collected using the NRL sonar system. Over the current period of 
performance SIG has delivered to NRL kernel matching pursuits (KMP) software, that was employed by NRL at the most recent 
blind test. Details on the KMP algorithm are provided below. Additionally, NRL has recently delivered data from that blind test to 
SIG, and SIG is currently processing this data. NRL will soon be delivering to SIG data from their most recent sea test, for 
processing at SIG.
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I. Progress Summary 
 

Signal Innovations Group (SIG) has been working closely with the Naval Research 
Laboratory (NRL) on development of advanced algorithms for detection and classifying 
MCM targets, with data collected using the NRL sonar system. Over the current period of 
performance SIG has delivered to NRL kernel matching pursuits (KMP) software, that 
was employed by NRL at the most recent blind test. Details on the KMP algorithm are 
provided below. Additionally, NRL has recently delivered data from that blind test to 
SIG, and SIG is currently processing this data. NRL will soon be delivering to SIG data 
from their most recent sea test, for processing at SIG. 
 
As detailed below, the KMP algorithm assume access to a set of separate training data, 
for the mines and clutter items of interest to the environment under test. This assumption 
was valid for the blind test the NRL executed. However, in many problems of practical 
importance, one may not have an appropriate set of training data, due to changes in the 
target and clutter characteristics, as well as changes to the channel properties. To address 
this problem SIG has been examining in situ learning algorithms, in which one integrates 
the sensing phase with classifier design. Details on this in situ learning algorithm (also 
termed active learning) are provided below. 
 

II. Kernel Matching Pursuits Details 
 

 
We are interested in learning sparse kernel machines of functional form  
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where 0,nw  is the bias term, ) ,  ( ⋅⋅K  is a kernel function measuring the similarity between 
two data samples 

T
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with N
1iiy =}{  the kernel-induced basis function centered at ic , and  

T
nnnnnn wwww ]  ,  ,  , ,[ ,2,1,0, L=w                                                 (3) 

are the weights that combine the basis functions in the summation, and the subscript n is 
used to denote the number of basis functions being used, with n<N. In the context of the 
binary classification problem consider in this section, a given x is mapped to an estimated 

{0,1}∈y  as 0.5])(U[ −= xfy , where )U(α  is a unit step function, equal to one for 
0≥α , and equal to zero otherwise. The form in (1) is the same as used in the SVM and 

RVM, although for the SVM K(ci, x) must be a Mercer kernel, while for the RVM and 
KMP this is not necessary.  

 
The KMP implements a set of functions of the form in (1). Assume we are given a 
training set N

iii y 1},{ =x  , where xi is the ith input and yi its expected output. The weighted 
sum of squared errors between the expected output and the KMP output given in (1) is  
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where iβ  is a constant responsible for quantifying the importance of the ith training 
sample ),( ii yx . For example, 1/ iβ  may represent the variance of the ith measurement; 
noisy measurements will therefore be given less importance when learning the model. In 
addition, if one has a priori knowledge that some data xi are in some sense “better” 
representative of the system being modeled this can be accounted for in the parameter iβ . 
The unknowns in (4) are the centers ic  of the basis functions in nφ , and the weights are 
represented by nw . The determination of ic  is addressed separately below. At the 
moment we suppose ic  and consequently nφ  are known and aim at solving for nw . Then 
the value of nw  that minimizes (4) is found to be 
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is the Fisher information matrix. Note that for (6) to be a BLUE estimate, we have had to 
make no assumptions with regard to the statistics of y conditional on x, other than that of 
a finite second moment. 
  
An nth order KMP employs n basis functions. The (n+1)th order KMP is inductively 
written as 
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with ) ,((.) 11 ⋅=φ ++ nn K c  a new basis function centered at 1+nc . The weighted sum of 
squared errors of the (n+1) th order KMP is 
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Assuming the basis functions in 1+nφ  are all known, then from (6) 
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minimizes (14), where the Fisher information matrix 1+nM  is given as 
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One may show that 1+nw , and 1+ne  are respectively related to nw  and ne  as    
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where 
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Since ),( 1+δ nKe c  is dependent on the center 1+nc  of the new basis function, we obtain 
different values of ),( 1+δ nKe c  by selecting different 1+nc . If we confine 1+nc  to be 
selected from the training data, we may conduct a “greedy” search in the training set but 
with the previously selected data excluded to avoid repetition. Formally, we have  
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From (14) ),( 1+δ nKe c  depends on the functional form of the kernel ),( ⋅⋅    K  as well as on 
support samples 1+nc . This allows us to optimize the kernel to gain further error 
reduction. A simple approach to take is to first conduct a “greedy” search of 1+nc  in the 
training set, for a fixed kernel, and then fix 1+nc  and optimize the parameters of the 
kernel. For radial basis function (RBF) kernels, the only parameter other than 1+nc  is the 
kernel width, thus optimization of RBF kernels with 1+nc  fixed is a one-dimensional 
search for the kernel width. It is also possible to optimize 1+nc  and the kernel width 
simultaneously, but then 1+nc  is treated as a free parameter and is no longer confined to 
the training set. Another possibility is optimization over kernels of different functional 
forms, which offers greater diversity of the basis functions available to the KMP.  
 
 

III. In Situ Learning 
 

Assume that the procedure discussed above selects n bases from the observed data X. We 
now require labeled data to optimize the associated model weights w. In a manner 
analogous to the previous discussion, we select those Xx ∈i  for which knowledge of the 
associated labels yi would be most informative in the context of defining w. Those xi that 
are so selected define a subset of signatures XX ⊂s , and these items are excavated to 
yield the respective set of labels Ls. The set of signatures and labels (Xs, Ls) are then used 
to define the weights w in a least-squares sense, and the resulting model f(x) is used to 
specify which of the remaining signatures sXx∉  are likely targets of interest.  
 
Assume that there are J signatures in Xs, denoted Xs,J. We quantify the information 
context in Xs,J in the context of estimating the model weights w, and further ask which 

Jsi ,Xx ∉  would be most informative if it and its label were added for determination of w. 
We have  
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The expressions (15) both employ an n-dimensional basis set XB ⊂n . In (15) the basis 
set Bn is known and fixed, and we are only summing over those signatures Xs,J for which 
knowledge of the associated labels is most informative in defining the model weights w.  
 
After adding a new signature Xx ∈i , Jsi ,Xx ∉ , we now have 1, +JsX  and Mn is updated 
as 

T
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where iJ+1 represents the index of the new signature selected for Xs,J+1. Using the matrix 
identity det(A+FFT)=det(I+FTA−1F)det(A), one obtains from (16) 
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Care is needed with regard to evaluating the inverse of Mn, since if J<n the matrix is rank 
deficient. We have considered addressing this in either of two ways. A standard approach 
for inversion of such matrices is to add a small diagonal term to Mn, such that its inverse 
exists. Alternatively, by construction one can assume that the items associated with the 
basis Bn are all associated with Xs,J, yielding a minimum of n labeled data and therefore 
assuring that the matrix is full rank. We have examined both procedures, and they yield 
comparable results.  
 
Having addressed the inverse of Mn, one iteratively maximizes )(ln

1+
ρ

Ji
x  to obtain  

)(lnmaxarg
,1 , xx XxXx ρ= ∉∈+ JsJi

                                             (19) 

Note that to define 
1+Ji

x we again do not require the signature labels. The elements of Xs 
are selected iteratively, in a “greedy” fashion as indicated in (19), until the information 
gain is below a prescribed threshold. After J iterations we have defined those signatures 
Xs,J for which knowledge of the labels will best approximate the weights w. These items 
are excavated, yielding the labels Ls,J .  
 
For the assumptions underlying the linear model in (1), and assuming knowledge of Bn 
and (Xs,J, Ls,J) the optimal estimation for the weights w is expressed as  

yΦΦΦw T1T ][ −=           (20) 
where y represents the set of labels determined via the J excavations 

T},...,,{
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and the )1( +× nJ  matrix Φ  is defined as 
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where, for example, 
1i

x corresponds to 
1i

y . 
 
In the classification stage we consider Js,Xx∉  and compute f(x). For a prescribed 
threshold t, x is deemed associated with the +1 class if tf ≥)(x , and associated with the -
1 class if f(x)<t, and by varying the threshold t one yields the receiver operating 
characteristic (ROC).  The key component of the model f(x) is that it is linear in the 
weights w, which yields a closed-form procedure for selection of Bn and Xs,J, as indicated 
in the previous sections.  
 
 
 
 
 

 




